————— ey
' - ' Form Agpraved
AD-A252 03 1' ~TJMENTATION PAGE , ows no. aroearas [ -5)
" % R B | ROW DOF rELEEMS, MOVEIAY ThE BMe 107 FEVEWINY NERKEOM, MNFORAG FIRERY Gatd
m ; T o e e o e e e S e T L e
LT ot e e i
1, REPORT DATE 3. REPORT TYPE ANO OATES COVERED ~
05-15-92 Techaical 06-01-91 to 05-31-92
4. TITLE AND SUBTITLE S. FUNDING NUMBERS
A test of the possibility .of calculating absorption , N00014~81-K-0598

spectra by mixed quantum - classical methods

[& AUTHOR(S) - I P :
K. Baug and H. Metiu ’ T E‘

7. PERFQRMING ORGANIZATION NAME(S) ANO ADORE

8. PERFORMING ORGANIZATION

University of California REPORT NUMBER
Department of Chemiscry vl T
Santa Barbara, CA 93106 c

9. SPONSORING / MOMITORING AGENCY NAME(S] ANO ADORESS(ES) 0. SPONSORING / MONITORING

Office of Maval Research AGENCY REPQRT NUMAER

Chemistry Program
800 N. Quircy Street
Alexandria, VA . 22217

11. SUPPLEMENTARY NGTES
Prepared for Publication in the Journal of Chemical Physics

122, QISTRIBUTION/ AVARABILITY STATEMENT 125, DISTRIBUTION CODE
Approved for public release; -
discribution unlimited

[13. ABSTRACT (Maximum 200 words)
Some of the most efficient methods for studying systems having a large number of degrees of freedom treat a few degrees of
freedom quantum mechanically and the remainder classically. Here we examine how these methods fare when used to
calculate the cross section for photon absorption by a quantum system imbedded in a medium. To test the method we study]
a model which has two degrees of freedom and mimics the properties of an one dimensional alkali atom - He dimer. We
treat the electron motion quantum mechanically and distance between the He atom and the alkali ion classically. Lighq
absorption occurs because the electron is coupled to radiation. The calculation of the absorption cross section by quantum-
classical methods fails rather dramatically: a certain frequencies the absorption coefficient is negative. By comparing wi
exact quantum calculations we show that this failure takes place because the time evolution of the classical variabl
influences the dynamics of the quantum degree of freedom through the Hamiltonian only; important information, which
fully quantum treatment would put in the wave function, is missing. To repair this flaw we experiment with a meth
which uses a swarm of classical trajectories to generate a “classical wave function™. The results are encouraging but requi
substantial computer time when the number of classical variables is large. We argue that in the limit of many i
degrees of freedom accurate caiculations can be performed by using the time dependent Hartree method and treating some
degrees of freedom by exact numerical methods (e.g. an FFT procedure) and the others by Gaussian wave packets or any]
other propagation method that is accurate for a very short time. Thisp'ocedmladstoasimpletimedomainpicmrecf
dephasing and line broadening in the case of a localized quantum system imbedded in a medium with heavy atoms.

14, SUBJECT TERMS 1S, NUMBER OF PAGES
43
16. PRICE COOE
mm“
17, SECURITY CLASSIFICATION |16, SECURITY CLASSIFICATION | 19. SECURITY QLASSIFICATION |20 LIMITATION OF ABSTRACT
GPF REPORT Of THIS PAGE QF ABSTRACT
Unclassified Unclassified Unclassified oL
NSN 7340-01-280-5500 . Standara Form 298 (Rev 2-89)

Pooncnang By ANY Sta. (391
298-182




OFFICE OF NAVAL RESEARCH

Contract N00014-81-K-0598

R&T Code N47092

Technical Report No. 2
A test of the possibility of calculating absorption
spectra by mixed quantum - classical methods
by

K. Haug and H. Metiu

Prepared for Publication in

The Journal of Chemical Physics

May 15, 1992

Reproduction in whole or in part is permitted for any purpose of the United
State Government.

This document has been approved for public release and sale; its
distribution is unlimited.

This statement should also appear in ltem 12 of the Report Documentation
Page, Standard Form 298. Your contract number and R&T Code should be
reported in Item 5 of Standard Form 298. Copies of the form are available
from your cognizant grant or contract administrator.




A TEST OF THE POSSIBILITY OF
CALCULATING ABSORPTION SPECTRA BY
MIXED QUANTUM - CLASSICAL METHODS.

Kenneth Haug .
Acce§nion For
Department of Chemistry CBTIS aRsag
o= oo - e IR A4 BN F Y 0
Lehigh UmverSIty : ‘i'?‘ﬁ-’lﬂounled =)
_ Nvastiflest ton . .
TTTTT———
Bethlehem, PA 18015 : !
By
and ;D Distr ﬂmtim/
. . Availabiliey Codes
Horia Metiu - TAwatlandjor

‘Dist ; Special
Department of Chemistry(2) and Physics i
_ University of California ‘Ajf ’

Santa Barbara, CA 93106 T

2-16613
92 ¢ 3 = \I|I|\|\|\\|ll||l \\l&ll\\lﬂl\l\l\lll\\\\\lll

(a).Correspondence should be sent to this address




Abstract: Some of the most efficient methods for studying systems
having a large number of degrees of freedom treat a few degrees of freedom
quantum mechanically and the remainder classically. Here we examine how
these methods fare when used to calculate the cross section for photon absorption
by a quantum system imbedded in a medium. To test the method we study a
model which has two degrees of freedom and mimics the properties of an one
dimeasional alkali atom - He dimer. We treat the electron motion quantum
mechanically and the distance between the He atom and the alkali ion classically.
Light absorption occurs because the electron is coupled to radiation. The
calculation of the absorption cross section by quantum-classical methods fails
rather dramatically: at certain frequencies the absorption coefficient is negative.
By comparing with exact quantum calculatiops we show that this failure takes
place because the time evolution of the dlassical variables influences the dynamics
of the quantum degree of freedom through the Hamiltonian only; important
information, which a fully quantum treatment would put in the wave function, is
missing. To repair this flaw we experiment with a method which uses a swarm
of classical trajectories to generate a "classical wave function". The results are
encouraging but require substantial computer time when the number of classical
variables is large. We argue that in the limit of many classical degrees of freedom
accurate calculations can be performed by using the time dependent Hartree
method and treating some degrees of freedom by exact numerical methods ( e.g.
an FFT procedure) and the others by Gaussian wave packets or any other
propagation method that is accurate for a very short time. This procedure leads to
a simple time domain picture of dephasing and line broadening in the case of a

localized quantum system imbedded in a medium with heavy atoms.

LY




L Introduction

Calculations in which several degrees of freedom are treated quantum
mechanically and the remainder classically are very popular{l). All such
algorithms divide the degrees of freedom in two classes denoted here symbolically
by q and ¢. The dynamics of the g-degrees of freedom is determined by solving the
time dependent Schriédinger equation

i hay(q ;tVat = [ K + V(q,c(t)] w(q ;t). (L1

The kinetic energy operator K depends only on the coordinates q. The classical
coordinates in the potential energy are replaced by their classical values c(t) at
time t. The latter satisfy the classical equation: of motion

m d2c(tVdt2 = - 3 { f dq w(g ;t* V(g.c(t)) wiq ;t)}act), (1.2)

where the interaction energy is averaged over the quantum degrees of freedom.
Other choices for the classical equation of motion are possible; the one given above
is the most popular. In what follows we call any method described by algorithms
based on (I.1-2) a traditional quantﬁm - classical method (TQC). The name
quantum-classical method (QC) is reserved for a method proposed here which
uses classical trajectories to construct a wave function for the c-degrees of
freedom.

In this algorithm the properties of the classical degrees of freedom are not

described by a wave function. They influence quantum dynamics as time




dependent parameters in Eq. (I.1).

Because of the large number of applications to a great variety of problems
it is not possible to make a broad statement regarding the accuracy of this
procedure. Wahnstrom et al (el have used it to calculate the correlation
functions appearing in the theory of the rate constant. They found that the results
given by the quantum-classical (TQC) method were very close to the fully quantum
ones, as long as the mass of the classical degrees of freedom was sufficiently
large. Alimi et al.[1d] compared the dynamics of a wave packet (describing the
quantum degree of freedom) coupled to a classical particle, to the exact quantum
behavior of the same system and were satisfied with the results. Both studies
were interested in short time dynamics.of systems for which the wave function
describing the g-degree of freedom did not sﬁlit into spatially separated pieces.
These conditions favor £he TQC method!?],

In discussing the results of the TQC method we found it useful to
distinguish two kinds of quantities: observables that have a classical

interpretation, which have the form

(w,t101y,t), (1.3)
where |y,t) is the wave function at time t and O is an operator representing a

physical quantity; and quantities that do not have a classical analog, which have

the form

(v,t101wy,0), 1.4)



where |1y,0 ) is the wave function at time zero.

All the examples which have shown that the TQC method works well
have calculated observables that have a classical interpretation. In this article we
examine whether the same is true when non-classical quantities having the form
(1.4) are computed. The calculation of the c¢cw absorption and Raman cross
section by time domain methods (i.e which use Heller's!3! formulae) provide
impertant examples of such quantities. There are very few examples of the
computation of an absorption cross section by TQC methods. Gerber and Alimill¢]
have reported in passing one calculation of an overlap integral between and initial
wave function and its value at time t. In our _Opinion the results were fairly poor
even at early times when the method is expe;:ted to perform best. Another such
calculation was performed by Thirumalai, Bruskin and Bernelld] who calculated
the absorption spectrum of Br, in an Ar matrix. They treated Ar motion
classically and the Br, bond length by Heller's Gaussian Wave Packets (GWP)
method. These authors were mostly interested in the adequacy of the GWP for
describing the quantum degree of freedom and not in testing the quantum-
classical procedure.

Our study is carried out by performing numerical experiments on a two
dimensional model for which the absorption cross section can be computed fully
quantum mechanically by numerical methods. The accuracy of the TQC method
is then determined by comparing its results to those of the exact quantum
calculations. The TQC results are extremely poor: the absorption spectrum (i.e.

the absorption rate) is negative at some frequencies.




The model has not been devised to give the TQC method trouble. It
consists of an ionic core, an electron and a He atom interacting through
reasonable potentials. The position of the electron is treated quantum
mechanically and that of the He-ion distance classically. The electron is coupled
to the electric field of the laser and absorbs light; the He atom influences this
process only through its action on the electron. One can think of this as an one
dimensional model for a Na atom weakly bound to a He atom. Since the electron
is the main actor in the absorption process and He has a supporting role, one
would expect that not much is lost if He is treated classically. The mass disparity
between the two particles is large and the time in which the electron samples its
environment to build the structure in the spectrum is extremely short. Both
conditions increase the chance that a quan;:um- classical treatment will give
reasonable results.

The negative absorption rate is not an accidental property of our model. It
is also present if we change the potentials to mimic the system HIHe for which
the TQC method gives good results for quantities that have a classical analog{1dl,
The failure is not caused by the low dimensionality of the model: the absorption
cross sections of I Xe,, or eNa*Xe;, has the same unpleasant feature!4],

By experimenting with the model we found that the negative rate appears
because the TQC method approximates the total wave function W(q,c;t) with

¥(q,c;t) = yiq;t). (1.5)

This contains no information regarding the c-degrees of freedom. The latter
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affect absorption only because their classical motion modulates the potential
energy in the Eq. (I.1) describing the time evolution of y(q;t). To avoid this

oversimplification we use
¥(q,c;t) ~ w(q;t) Ac;t) expli S(e;tihl, (1.6)

Here A(c;t ) and S(c;t) are real functions of the positions of the classical particles.
A and S are calculated by propagating a swarm of classical trajectories whose
initial conditions mimic the initial quantum state of the c-degree of freedom. The
square root of the density of these trajectories in the neighborhood of the point ¢ at
time t gives A(c;t); S(c;t) is the sum of the principal Hamilton functions for the
trajectories that have reached the neighborhood of c at time t. The absorption
spectrum calculated from the wave function ¥(q,c;t) defined by the above
procedure is close to that obtained by the exact quantum calculations. The
accuracy deteriorates for long time calculations and therefore the method is not
useful if one is interested in low resolution spectra. In the case that the system is
~ imbedded in a condensed medium this is not a handicap; the spectra of such
systems are broad and thus are not altered by low resolution measurements.

This calculation requires about the same amount of computer time as the
traditional TQC method. The method can be used to calculate Raman spectra,
electronic absorption spectra and to solve curve crossing problems. Since we have
not derived validity criteria for this approximation it is not prudent to use it in
new applications without testing it on simplified models for which exact
calculations are possible.

The reasons for the failure of the TQC method are then examined in the




context of Heller's'38] time dependent description of the absorption spectrum. As
was explicitly pointed out by Heller{3¢] and by Messina and Coalson(4! all the
degrees of freedom in a complex system affect the absorption line shape. In the
present case the medium's degrees of freedom influence the absorption spectrum
because overlap of their wave function at a time t with the initial wave function
decays with t{38] on a time scale which gives the spectrum its width. The TQC
method erroneously assumes this decaying overlap to be equal to one. The
calculations reported here show that the error cause by this replacement is
dramatic and of a qualitative nature.

A detailed analysis ( Section VII) suggests that when the excitation of the
absorber affects a large number of the degrees of freedom in the medium, the
absorption cross section can be accuratel}; calculated by using short time
quantum methods to describe the dynamics of the medium's degrees of freedom.
This is extremely efficient computationally. Unfortunately it works only for a
large number of classical degrees of freedom and therefore its accuracy cannot be
tested by comparison with fully quantal numerical results.

IL The Models

To test various TQC procedures we calculate the absorption spectrum of a
colinear system consisting of an electron (located at r), an ion of infinite mass
(located at the origin) and an atom having the mass of He (located at R). The
interaction energies are physically reasonable but do not represent accurately the
alkali -He system. Nevertheless, we will use the names alkali atom (or ion) and
He for the particles defining the system.




The alkali ion - electron interaction energy V,; is

Vﬂi(r)-.--e’!/rc if r<r,

V(M =-/r if r.<r (I.1)

e is the electron charge and r, is a cutoff parameter whose value is
specified below. Eq.(II.1) was suggested by Shaw!®3] and has been used by
Rahman and Parinello(®®! , Selloni,Carnevali,Carr and Parinello!’}, and Haug
and Metiu'®!,

The electron-helium interaction energy is that used by Coker, Berne and
Thirumalai (9] (for electron-xenon) _

Ve (X)= Y (@/X%) [bc+X8)- 1], (I1.2)

n

where

X = min (Ir-RI ,R; }, (I1.3)
a=26.86eVA* ,b=108.0 A%, c=83.29 A5, The cutoff distance R, = 0.5 A makes
the potential finite (and constant) at short distances. The total electron interaction

energy is

Von(TR) = V(1) + V, (r.R). (IL4)
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The alkali ion -helium interaction energy is given by a harmonic potential
which roughly approximates the potential well of the potassium ion - xenon
interaction!10!

V,R) = (V2)Mo?R?; (IL.5)
R is the atom-ion distance and @ = 0.1 eV.

The momenta associdted with the positions (r,R) are denoted by (p,P). The
Hamiltonian is

H = Hi;(R, P) + Hy, (r,p;R). _ (11.6)

H,, , describing the ion - atom internuclear motion, is given by

H, =P2/(2M)+ V,,(R). I.7)
The term
H,,= p2/(2m) + V,(r,R) (1L.8)

contains the kinetic energy of the electron plus its interaction energy with the ion

and the rare gas.




n
IIL Exact and time dependent Hartree calculation of the absorption cross section
The absorption cross section o(®) for a system initially in the ground st:_ate

'Y, )is

o(w) ~ oRe L ~ dt exp(iat) C(t). (I11.1)
with

C(t)= exp(E /1) (¥, (0) 1%, ) ). (I11.2)

(¥ (0)1'F,, (1) ) is the overlap integral between the promoted wave function
¥y )=-r I'¥p), (I11.3)

at time t=0 and the promoted wave function
1) = U®)I¥,) | (111.4)

at time t. U(t) is the molecular (the field is not included) propagator, Eg is the
ground state energy and r is the electron position.

- These equations are similar to those proposed by Heller(32], except for the
fact that the transition dipole matrix element in the Heller formula is replaced by
the electron poéition. This modification is necessary because we treat the electi;on

motion explicitly.
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The spectra reported here are calculated from

o(w;t) ~ ®Re IO = dt f.(t) exp(iot) C(t). (I11.5)

This equation gives a low resolution version of the exact spectrum. The peak

width A ~ 27/t is set by the time constant t in the "window" function{!1]

£(t) = expl-(t /)% ). (111.6)

The computation of the ground state and of the promoted state evolution
are sketched in Appendix A. i
" The starting point of all TQC procedures is the assumption that there are
no statistical (i.e.quantum) correlations between the q and ¢ variables ( i.e. the
wave function has the form ¢(q)x(c)). For the simple system considered here this
approximation is identical to the time dependent Hartree (TDH) approximation.
To distinguish the errors introduced by neglecting qusntum correlations from
those caused by using classical dynamics we perform calculations with the TDH
method and compare them to the exact ones. In the TDH calculations the ground
state and the promoted state have the form

(r,RI¥g) =~ (rlog) (Rix,) explingh). (I11.7)

and




(rRI¥, ) =(rirl¢) (RIxy) explin/h)=( ri¢) (Rlxy) exp(ing/h) (I11.8)

The phase exp(inglh) - which is called in what follows the Hartree phase - is
introduced to simplify the form of the TDH equations of motion.
Substituting the Hartree form (II1.8) of the wave function into the
Eq.(IT1.2) for the overlap integral leads to

Cp(t) = expGEtH) (8,(0) | §,() (g(0) ] %5(t)) expliln (b} (O)VA).
(I11.9)

The notation C,(t) indicates that the overlap: integral is calculated by using the
TDH wave function. The 1after are obtained by solving the TDH equations(!2],

i 19 = [p%2m + V0 + g Vea R 1)/ Cag 0 1 16, (TIL10)

2 13) = [P22M + Vig(R) + (0, 1 Voo (R0 /(9,10 1 1), (IIL1D)
and

%n, = Optg! VealR) 200 / (gl (01 65) (II1.12)

The Hartree ground state energy is

Eg= (9! p%2m+Vy(r)l 00/ (b5 0g) + (g | PE/2M+V;,(R) 1g) ! g Xg) +
(0gxe ! VearR) 12050 / (Xg! %g) (0 10,) . (111.13)
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In the Appendix B we show that the use of the Hartree approximation in
the equations (III. 1-5) leads to several formulae for the cross section which ére
not equivalent to each other. The version presented above is the simplest and
more accurate (i.e. for the present model it gives the closest results (but still poor)
to the exact quantum calculations).

In Fig. 1 we compare the absorption cross section given by the TDH (Fig.
la) with that obtained by exact quantum calculations (Fig. 1b). The spectrum
consists of an electron excitation (at about 3.75 eV) and vibrational side bands due
to the alkali-helium oscillations. The TDH calculation reproduces the intensities
and the positions of the main peaks. It gives small negative absorption

coefficients for a few frequencies, but the overall accuracy is satisfactory.

IV. The "Traditional” Quantum -Classical Method.
To calculate the overlap integral leading to the absorption cross section by
the TQC method we use the wave function

(r,RI‘I‘p)-(rlq)p)a(rlrlq)g) _ (Iv.1)
Compared to the TDH wave function (II1.7-8) the equation (IV.1) neglects

the wave function for the classical degrees of freedom and the Hartree phase Mg
With this assumption the overlap integral (II1.9) becomes

Ceqe(t) = explE /) (6,(0) 1 Uy ()19,(0)) . (IV.2)




The subscript tqc indicates the use of the traditional quantum-classiéal
method. The propagator U, (t) is the formal solution of the equation

ih% 16,) = [ p22m + V@ + (Vo (i) Y 1 10,0 (IV.3)

In other words thc(t) | ¢p(0)) is solution of Eq. (IV. 3) with the initial condition
19,(0)). The interaction between the quantum variable r and the classical one is

given by

(Vea™it) g = g‘hﬁi V,;(r;Rn(i)i. : (IV.4)

The position operator R in the interaction is replaced by its classical value at time
t. To calculate this mean potential defined by Eq. (IV.4) we run a bundle of N
trajectories whose initial conditions are sampled by a Monte Carlo procedure
from a suitable distribution ( see Section VI). (V,(r,t))g is the average of the
electron - He interaction over these trajectories. The use of this average was
suggested in Ref. 1d; }it is consistent with the averaging that appears in the TDH
equation (II1.10). Most applications of the quantum-classical method use one
trajectory.

The equation of motion for each of these trajectories is

M d?R/dt? = - A Vi(R)IH ¢, (t) 1V, (r,R)16,(t)) } /AR. (IV.5)




The second term on the right hand side of (IV.5) is the mean interaction between
the quantum and the classical degree of freedom. Note a serious dynamic
inconsistency of this scheme: the q - ¢ interaction used in the time dependent
Schrédinger equation is different from the q - ¢ interaction used in the Newton's
equation for the classical variables.

The time dependent Schridinger equation (IV.3) and the classical
equation (IV.5) are solved self-consistently. At time zero the Monte Carlo
procedure generates the initial conditions for the classical trajectories. This gives
a set of values R (t=0) , n=1,2,...N, which are used to calculate the mean potential
(IV.4) which enters in Eq. (IV.3). Once this potential is known we propagate the
wave fuxi[:tion Icpp) for a time step t and determine (rl op.T ). This is then used to
calculate the mean force in Eq. (IV.5) which is then solved to obtain R (1) after a
time step 1, for all n. If, for example, we propagate simultaneously one hundred
trajectories, we solve simultaneously a hundred classical equations and the time
dependent Schridinger equation for [9p)-

This definition of the TQC procedure is not unique. For example we
might have preserved the phase Ng appearing in (II1.8) and solve

3 N

SNg= & E @it Vg (TR (ED105.6) / (9p,t1 6,,1) (1V.6)

which is the quantum - classical version of Eq. (III.2). We experimented with
such variations and found that they do not give better results.
In Fig.2 we compare the absorption spectrum calculated with the TQC
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approximation to that given by the TDH calculation. The negative absorption rate
at lower frequency (Fig.2a) is absurd: the intensity of a weak beam of light will
grow exponentially as it penetrates a sample having this property. The positive
peaks at higher frequency resemble the correct spectrum except for a downward
shift of about 0.1 eV. One reason for its presence is the inability of the classical
mechanics to reproduce the zero point energy of He after the excitation of the
electron; the zero point energy of He when the electron is in the ground state is
taken into account through the MC sampling.

Other versions of the TQC procedure (i.e. using one trajectory only,
keeping in the quantum-classical theory the phase Mg introduced when the TDH
approxirm_ation is made, using a slightly different formula for the absorption cross

section ( see Appendix B)) either do not imprové the results or make them worse.

V. The need for a"classical wave function”.

Previous{®] TDH calculations of the absorption spectrum of Iy in an Ar
matrix were in agreement with the experimental measurements. The results
presented in Section III, ... « other calculations whose results are not reported,
show that the TDH approximation gives a reasonable absorption cross section for
the systems considered here. The absorption coefficient takes only small negative
values. The spectrum does not deteriorate as the cut off time is increased form
100 fs to 600 fs.

Therefore, in the kind of examples considered here the large negative
:absorption coefficient in TQC does not come from the use of the TDH

approximation, but from treating the dynamics of R classically. This involves two
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kinds of approximations: the neglect of the wave function for R and the use of a
swarm of trajectories to calculate the mean potential acting on the quantum
degrees of freedom. The use of a mean interaction can lead to substantial errt;rs
when the wave function of the quantum degree of freedom splits into spatially
disjoint pieces or becomes very delocalized(2]. This is not the case in the present
examples: the wave function of the excited electron in the alkali atom is well
localized. Moreover, if the mean potential were a source of error the TDH
procedure, which uses a very similar mean potential, should also produce errors
and it does not.

We are led therefore to suspect that the reason for the negative absorption
coefficients in the TQC calculation is the absence of a wave function describing the
behavior of the c-degrees of freedom; that is, the use of Eq. (IV.1) and its
consequence (IV.2)). ~That approximation assumes implicitly that whatever is
missed by removing the classical degrees of freedom from the total wave function,
is made up through the action of the time dependent potential ((V,(r,t))g given
by Eq. (IV.4) ) appearing in the Hamiltonian for the quantum degrees of freedom (
Eq. (IV.3) ). This potential oscillates on a time scale set by the classical motion of
the medium and this affects the electron's wave function. The random motion of
the classical bath will dephase the quantum degrees of freedom and broaden the
peaks in the spectrum. It will also cause energy exchange between the ¢ and the
q degrees of freedom, leading to sidebands in the spectrum. The potential may or
may not do that, but unfortunately it also has the unfortunate effect of giving
negative absorption coefficients and spurious side bands.

To demonstrate that the difficulties encountered by the TQC calculations

are due to the suppression of the wave function for the c-degrees of freedom, we
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have performed the numerical experiments described below. These
"experiments” are conducted within the TDH approximation, which does not
suppress the wave function for the c-degrees of freedom. This wave function
contributes an additional term in the overlap integral used to calculate the
absorption spectrum; one can say that the main approximation in the TQC
method is to replace this additional term ( i.e. (xg(O) | xg(t)) exp(ing/‘h) in Eq. (IV.2)
) by one (compare (IV.2) to (IIL.9)). |

The Fig.3a shows the spectrum obtained by using the correlation function

Cy(t) = exp(iEgt/h) (0,(0) 16,,(L)) . (V.1)
instead of C(t) of Eq. (II1.2). The correlation :function formula for the absorption
spectrum is the same as in the TQC procedure but the wave functions I(pp(t)),
I¢p(0)) and the ground state energy Eg are calculated by solving the TDH
equations (II1.10-12), not by using the TQC dynamics.

The spectrum calculated without (xg(0) I x,(t)) is as bad as the one
generated by the TQC procedure, even though we have use the TDH dynamics to
perform the calculations. It has the same red shift of about 0.1eV, a large
negative amplitude and an erroneous but small absorption peak at the red side of
the fundamental peak. The close similarity between these two calculations
confirms our statement that the poor results for the spectrum come from_the c-
wave function suppression.

Next we perform further experiments to try to understand how various
parts of the c- wave function influence the calculated absorption spectrum. First




2

we perform a cross section calculation in which the overlap (xg(0) | xg(t)) is left out
but the phase factor exp(i[ng(t)-ng(O)]lh) is included. That is we use

Cy(t) = exp(EGLH) ($,(0) ] 0,(t)) explilng(t)-n(OIV). (V.2)

instead of Eq.(II1.9). The resulting spectrum is shown in Fig. 3b. There is a
minor improvement but the negative absorption coefficient is painfully visible.

In Fig. 3¢ we show the spectrum obtained by using

Clt) = explE M) ($5(0) | 0,(£)) explilng(t}ng(OVA) | (1 (0) I2g(t) |
(V.3)

which includes the absolute value of (xg(O) I xg(t)).
Fig. 4d shows the one obtained by using

C4(t)=expE_t/MXo,(0) | ¢, (tDexplng(t)}n (0)VMXx (0) I xg ()N I (x0) I %o () (V.4)

which contains only the phase of (xg(0) I xg(t)). The results show that (x¢(0) Ixg(t)
makes its most important contribution to the cross section through its absolute
value.

The main conclusion of this section is that to obtain good spectra by a QC
method we need a reasonable approximation to (Xg(0)| 24(t)), or at least to
l(x‘(O) | ngt)ﬂ . The replacement of the overlap of the c-wave functions with one -
which is made in the TQC method - is not tenable. The physical reason for this is
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discussed in Section VII, where we also suggest better and more efficient

approximations.

VL The classical wave function
To obtain a wave function for the c- degrees of freedom from classical

trajectories we write the c-wave function %(R,t) as
x R,t) = AR,t) expl i S(R,t)/ h]. (VL.1)

where A and S are real functions. Inserting this form into the time dependent
Schriédinger equation leads tol13]

254(VSP/IM+ VyR) +( 0,0 IVop(rR) 10,0 - 62 2MA W2 A=0  (V12)
and
2 A24V A2V S/M)=0. (VL3)
One can show(13] that
ARL2Z= I dR' x (R,t)*8(R-R)x R'.t) (VI4)

is the particle density at the point R and
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ARt?VSR, VM= ] dR'Y(R',t)*{(P/M)S(R-R)+(S(R-RUPAMIX(R' ) (VL.5)

is the mean particle flux through the unit area located at R. Thus both S and A
are relaﬁed to ﬁe expectation values of operators (i.e. the density and the flux
operators) having a well defined classical meaning. As we have already pointed
out in the introduction we expect methods based on classical dynamics to work
better when applied to quantities that have a physical meaning in the classical
Limit.

To calculate classically A(R,t) and S(R,t), hence the wave function x (R,t) =
AR,t) exp[ i S(R,t) / 1] which has been discarded by the TQC, we use the method
described below. This is based on the well known observation that when the
"quantum force” (h2/2MA)V2A is negligible the Eq. (VI.2) resembles the
Hamilton Jacobi equation(14] of classical mechanics. We construct a solution of
this equation by running a swarm of classical trajectories with initial conditions
generated by a Monte Carlo procedure designed to mimic the information
provided by the initial wave function for the degree of freedom R. That procedure
is described later in this section. To construct solutions of the Eq. (VI.1) and
(V1.2) (with the quantum term absent) we discretize the variable R and denote by
Ry, .. R;,.. the discrete points. The value of the function A(R,t ) at R; is defined as
the square root of the density of trajectories present in the bin in which R, is
located. The value of S(R,t) at R, is given by

S(R; t) =(1/N)i 8o(t; : (VL.6)
a




where

t
8 (1) = [ dt{P (IR () - HIR(D), Po(t)]) VL.T)
0

is the classical action for the trajectory a and y; restricts the sum in Eq. (VL6) to
those trajectories that are, at time t, in the bin containing R;.
This procedure is justified as follows. If we define

PRt = ), plt)? (VL.7)
ai(t)

then the quantities S(R;,t) and P(R,,t) satisfy Eq.(V1.2) without the quantum term.
This is true because the quantities s, and p, satisfy the Hamilton Jacobi
equation{14]. Note that the definition '

PRt2={Y p,m}2

ai(t)

would not lead to a solution of (VI1.2).

To complete the procedure we must provide a sampling rule. We use the
probability 1x_(R,0) 12, provided by the initial wave function for the variables to be
treated classically, to generate ( by Metropolis sampling) an initial value for R,
which we denote R;. Then we use the equation

Py=% (2M[E-E(Ry)-V,,Ry 1} V2. (VL.9)

to calculate an initial momentum P,. Here E is the total energy of the system and
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E R, is the energy of the quantum subsystem when R=R,. If P is imaginary we
reject Ry and try again. If it is real we accept {Pg ,R; } and {-P; ,R,} as initial
conditions. We repeat the procedure until several hundreds of initial conditions
are generated. These initial conditions are then used to generate the swarm of
trajectories. The swarm and the wave function for the quantum degree of
freedom are propagated self-consistently by solving the simultaneously the
equations (IV.3-5).

The sampling rule is not unique and many other procedures are
available. The one used here attempts to put into the classical initial conditions
the physical information contained in the initial wave function: the total energy
and the position distribution for the degree of freedom to be treated classically.

Tile replacement of x(R,t) m the ﬁartrée correlation function of Eq.(II1.11)
by the "classical wave function” A(R;t) exp(iS(R;tVh gives

Cqc(t)= exp(GE th) (,(0) 10, (t) } (X(R,0) X(R,t) ), exp( iA(tVh ). (VI1.14)
The subscript qc denotes a QC calculation. The "classical” overlap term is
R0 XR.H)), = ] dR A(R,0) exp(-iS(R,0/h) A(R,t) exp(S(R,t¥) (VL15)

and the ground state energy is




z .

Ep = (05! (p%/2m + V() + (Vo (rhp}H 0 ) 1 (010 ) +
N
f]f Y [P 22M+V, (R ]. (VL16)

n=]

Since the trajectories are calculated after the Monte Carlo sampling generates the
initial positions and momenta, the sampling weight does not appear in the sum

(i.e. the sum is calculated by the Monte Carlo procedure). The Hartree phase

term
At = n(t) - n(0) (VI17)
in (VI.14) is
t N
M) = Io dt’ (9,(t)! i}n% VeamRa(t) 145())/ (0516, ) (VL.18)

This sum is also calculated by the Monte Carlo procedure and the Monte Carlo
weight does not appear in the sum.

We note other procedures that use similar algorithms to generate wave
functions or other time dependent quantum amplitudes. Recently Heller{15!
presented an interesting implementation of the semiclassical formulal16] for the
time dependent propagator. A different method, proposed by Olson and
Michal17a], has been used in'tile time dependént theory of photo-dissociation{17b],

In Fig. 4, we compare the spectrum obtained by using the QC correlation
function of Eq.(V1.14) with the TDH speétmm (which»is practicaliy exaét). The
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large negative cross section (that appears in the TQC calculation) has
disappeared. The band head position is still shifted by about 0.1eV; this happens,
in part, because classical dynamics does not give the R degree of freedom a zero
point energy in the excited state of the electron.

To better understand how various elements of the classical wave function
affect the spectrum we have performed calculations similar to those described in
Fig. 3, except that we have replaced the TDH procedure with the method described
in section. The results are very similar to those presented in Fig. 4 and are not

given here. The most important contribution to the spectrum is made by the

quantity

KER.0) I xR0 ), I = f dR A(R,0) A(R,t)cos(SR,tV)}> +
{ f dR A(R,0) AR, t)sin(S(R, £y}

The phase S(R,t) of the classical wave function is important, but the phase of
®R,0) I x(R,t) ), is not.

Calculations on a system mimicking the HIAr system, in which the
hydrogen atom is ‘reated quantum mechanically and Ar is treated classically
lead to similar results. This suggests that the conclusions of our analysis are not

system dependent.

VII. Summary and discussion.
The present calculations have shown that the TQC method can give
physically absurd results (e.g negative absorption coefficients) when used to
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compute absorption cross sections, and perhaps other quantities that do not have
a simple classical interpretation. Several numerical experiments have been
performed to determine the source of error. They established that (a) the TDH
calculations give good results for the system of interest here (confirming the
conclusions of Messina and Coalson(12]), (b) If we perform TDH calculations but
remove - from the equation for the absorption cross section - the overlap integrals
corresponding to the c-degrees of freedom we obtain again negative abhsorption
coefficients. This indicates that the source of the error is not the use of classical
dynamics to find the mean time dependent interaction between the electron and
the classical degrees of freedom, but the absence of a wave function for the
classical degrees of freedom. The TQC method approximates (in the formula
giving thé cross section) the overiai: inteérals for the c-degrees of freedom by one.
Our "experiments” have shown that this is a particularly unfortunate choice. (c)
One can use classical trajectories to calculate the overlap integrals in the formula
for the absorption coefficient, to obtain satisfactory results.

In this section we examine in more detail why TQC fails. This analysis
also leads us to suggest a computational method that is likely to give good results
for the spectrum of an impurity in a condensed medium. For concreteness we
consider a one electron atom imbedded in a medium. The analysis and its
conclusions are generally applicable.

Within the TDH approximation the absorption cross section is determined
(see (II1.1-4)) by the overlap integral

N
Ct) = (G, t15,,0)] T (9;,t16;,0) (VIL1)

i=l




Here 1§, ,0)=x 1§, ,0) is the promoted state of the electron. The
electronic contribution (o1 Cp ,0 ) gives the positions of the atomic absorption
lines; the overlaps (¢;,t19;,0) give these lines a width and generate vibrational
side bands (if any). We concentrate now on understanding the properties of the
product of nuclear overlap integrals, by using methodology developped by
Heller{3],

In the absorption cross section formula the atoms of the medium are in

their ground state at time zero. Their potential energy is given by
Ve R) = f dr Cg (r, R,t=0) V(r, R) ‘Qg (r, R,t=0). (VIL.2)

Here R is a symbol for all the atomic positions, Cg (r, R,t=0) is the ground state
electron wave function and V is the electron - medium interaction energy. At
time zero the medium's atoms are located around the positions Rg which
minimize V_ (R).

When we start the absorption cross section calculation the Heller formula
requires us to place the electron in the_ promoted state Cp(r,R,t=0) =-X Cg(r,R,t--O).

The potential energy felt by the atoms of the medium is now
vV, (R) =f dr {, (r, R,t=0) V(r, R) §p (r, R,t=0). (VIL.3)

The equilibrium positions Rp appropriate to the "promoted electron" state




minimize Vp (R) and differ from Rg. As a result at a time immediately after zero,
the force

F=.9YpRg (VIL4)

3Ry

on the medium's atoms is finite and pushes them away from Rg, towards R,. As
a result, all the overlap integrals in Eq. VII.1 will become smaller in a very short
time. To this Hellerian3! analysis we add an important observation made by
Nitzan(18! in connection with the rate of radiationless transitions: If a sufficiently
large number of the medium's atoms are affected by the "promotion” of the
electron, their overlap integrals (¢;,t!¢;,0) @1 all start decreasing and their
product in Eq. (VII. 1) will decreaée very ;rapidly. This has an extremely
important consequence: larger the number of atoms coupled to the electron,
shorter the time needed for the calculation of the absorption cross section!

In what follows we show that this time can be so short that the atoms of
the medium do not have time to sample the potential energy surface; as a result
the latter can be described by a local harmonic approximation. This makes it
possible to apply Heller's Gaussian wave packet (GWP) method(3b] to describe the
quantum dynamics of the atoms in the medium with high accuracy. The
outcome is that a method using the TDH approximation and treating the
medium's atom by a Gaussian wave packet method and the electron exactly will
give very good results for the absorption cross section for large systems.
Moreover, larger the system, better the results!

Let us assume that the time in which the product of the overlaps decays
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is so short that, for the duration of the decay, we can use a harmonic
approximation for the forces acting on the medium's atoms. This allows us to
use the short time analysis employed by Heller, Sundberg and Tannor{3d! in their
discussion of Raman spectra, to determine the decay time and test whether it is as
short as assumed. For simplicity we treat the medium's atoms as independent
harmonic oscillators (i.e. we use an Einstein model). One can refine the
argument by using normal modes etc., but its essence is not altered by our

simplification. The initial wave function for one of these oscillators is
0 (R,t=0) = (may, /xh)/4 exp[-maw, R? /2h] (VIL5)

Here mg' is the local harmonic frequency obtained from the force constant
92V ‘/ERgz. We use a coordinate system centered at R,. When the electron is
promoted this wave function moves under the influence of the potential Vp. For a
short time this motion can be treated by Heller's frozen Gaussian method(3b],

This means that at the time t the wave function has the form

O(R,t) ~ exp[-may (R-R(t))? /2h] expl[iP(tXR-R(t))] (VIL6)

Since we want to calculate the decay of the overlap integral we ignore here the
phase factors and the normalization constant. A detailed analysis and an
algorithm based on these observations will be presented elsewherell9]. The

overlap integral is
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I dRO(R,)* (R,0) ~ exp[-P(t)2/2ho)‘m] - exi)[-(F t)2/(2ha)gm)] (VIL.7)

We have used the fact that for a very short time the classical momentum P(t) = F t,
where F is the force given by (VII.8). We see that the earliest evolution of the
overlap integral for one atom of the medium is a Gaussian decay with time. The
time scale of this decay is

1:=(2hmgm)1’2 /F (VIL.8)

We can estimate the magnitude of this time as follows. In the local harmonic

approximation F = mmp(SRe)2 ivhere @, is the oscillator frequency when the

P
electron is in the promoted state and 3R, is the difference Rp -Rg between the
equilibrium position R, of the atom when the electron is in the promoted state and
the equilibrium position Rg when the electron is in the ground state.
Furthermore, Zh/(mmg) = (SRg)2 where (SRg)?' is the mean square displacement of
the oscillator when the electron is in the ground state. Using these equations in
(VIL.11) leads to the estimate

o © = (0 /o, JVAER,, /5R,)

If we make the reasonable assumptions that Wg ~ @ and SRp<8Re then tis less

P

than wy"L. If we take @, = 200 cm™! and assume t =~ @}, the overlap integral is

equal to 0.014 in 75 femtoseconds. If the promotion of the electrons disturbs n = 10
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atoms, the spectrum depends on the product of the ten overlap integrals and the
decay time of the product is roughly ¥n. Numerical calculations using Eq. (VIL.7)
and the estimates explained above show that the product of ten Gaussians is equal
to 0.003 in a 7.5 femtoseconds. For n=12 tbe product is equal to 0.0001 in
3 femtoseconds. Within this short time the displacement of the heavy medium
atoms is very small and this justifies the local harmonic approximation and
makes the argument self-consistent.

The main observation here is that if the electron ( or the impurity degrees
of freedom gener'ating the spectrum) is coupled to many nearby atoms, the time
needed to calculate the spectrum is extremely short. This is true regardless of
how slow (i.e. heavy) these atoms are, which is somewhat counter-intuitive. This
allows the use of simpler methods which treat accurately short time quantum
dynamics: the Gaussian wave packet method(3P], the expansion proposed by
DePristo et all29], analytic continuation methods, quantum Monte Carlo methods
or the Magnus ( cumulant ) approximation. We are currently pursuing some of
thesel19],

The fast decay of the product of overlap integrals also explains the failure
of the TQC method, which replaces this product with one. Paradoxically, a
method that was designed to help when the medium has many degrees of freedom
becomes less and less useful as the nﬁmber of the mediums atoms that affect the
electron is increased. The only application left for the method, in the field of
absorption spectroscopy, is to the study of inhomogeneous broadening by static
disorder{21],
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Appendix A: Computational details
A.1 The initial state

The initial ground state wave functions for both the exact quantum
calculation and the Hartree approximation is calculated by acting with the
exp(—aH] on an arbitrary wave function with the appropriate symmetry. As the
real number @ becomes larger the result converges towards the ground state of
the Hamiltonian H. For propagation we use a method proposed by Fleck, Morris
and Feit?2), The numerical procedure has been described by Hellsing, Nitzan
and Metiul23! . Others{24] have used a very similar procedure in a different

context.

A2 The time evolution of the promoted state -

The quantum time propagation is performed with the algorithm of Fleck,
Morris and Feit(2!] and the classical equation of motion is solved with the
Verlet(23] algorithm. |

For the fully quantum calculations we have used a time step of 0.01 fs and
a spatial grid having 48X96 points with a spacing of 0.6 A in the r-coordinate and
0.067A in the R-coordinate. The results were checked for convergence by making
the spatial and temporal steps smaller until the result did not change.
Increasing the number of points in the spatial grid shifted the ground state
energy of the electron by less than 1%. We typically propagate the system in time
for 100-300 fs. This space-time grid results in better than 0.1% conservation of
energy over a 100 fs time span for the quantum propagator.

In the Verlet a]gorithm[25] the time step of 0.01 fs was used. The total




14

energy was conserved to better than 0.1% over 300 fs. The absorption cross section
converges when the number of trajectories is between 200 and 600.
Appandix B: Various formulae for the cross section.

Often the same approximation applied to several equivalent formulae
leads to procedures having different accuracy computer power requirements. As
shown below this happens when the TQC approximation is applied to the formula
giving the absorption cross section. We can write the correlation function used in

Chapter III as
Ct)= (¥g!r exp(iHt/h) r exp(-iHt/N)| ‘I’g)‘ =(¥,tl r I‘I‘g,t)‘ . B.1)

where l‘i") is the ground state at time zero, l ‘Pg,t) is the ground state at time t,
and |'¥,t) is the promoted state (see Eqgs. (IT1.3-4) for definition) at time t. If exact
quantum calculations are performed Eq. (B.1) is equivalent to Eqgs. (II1.2-4).
However if we make the same dynamical approximation in these equivalent
equations the results are different.

The Hartree approximation in Eq.(B.1) leads to

C(t) = (dgtirl Op:tXx gt 1 X, thexp(ln,(t)-n (VD). (B.2)

To calculate a spectrum by this formula we must propagate (by TDH or by a TQC
method) both the ground and the promoted state.
We have found that, whether we use a TDH or a TQC method of

propagation this, this prescription works less well than the approach outlined in




Section ITI.

A similar form is obtained if we derive the Heller formula directly from
the time dependent perturbation theory. The state created by the laser is
proportional to

t
It ~ f dt, Uttt F(t UG '¥p)
0

where I‘Pg) is the ground state of the system,
F(t)= -er-E(t),

and U(t) propagates the system's wave function (electromagnetic field not
included) from zero to t. The rate of growth of the population created by the laser,

which is essentially the absorption cross section is

t
d(¥,t1 v, tydt ~ Rej dtl(‘I‘glU(-t)F(t)*U(t-tl)F(tl)U(tl) I'¥p)
0
This equation can be used whether the excitation is caused by a short pulse or by a
cw source. In the latter case the propagation time t determines the spectral
resolution. Applying the TDH or the TQC procedure to this equation, which is
equivalent to Heller formula, leads to yet another prescription. If the TQC

propagation scheme is used this procedure also leads to negative absorption

coefficients.




FIGURE CAPTIONS

Fig. 1 A comparison of the absorption spectra obtained from Eq. III.5 with t =
100fs, by using two methods for calculating C(t): (a) The correlation function C(t),
given by Eq. III.9 was calculated with the time-dependent Hartree (TDH)
approximation; (b) C(t), given by Eq. (III.2) was calculated quantum
mechanically (i.e. no approximations). The spectrum, in arbitrary units, is

plotted versus photon energy in eV.

Fig. 2 A comparison of the absorption spectra obtained from Eq. ITI.5 with Tt = 100
fs by u_sing two different methqu for computing C(t): (a) the "traditional
qummm;dassicd (TQC) approximation with: C(t) given by Eq. (IV.2) ; (b) the
time dependent Hartree (TDH) with C(t) given by Eq. (III.9). The absorption

spectrum in arbitrary units is plotted versus photon energy in eV.

Fig. 3 The absorption spectra (in arbitrary units) versus energy (in eV) by
suppressing various components of the TDH correlation function ( Eq. IT1.9 ):

(a) spectrum calculated by using Eq. (V.1) in which C(t) contains only the overlap
of the electron promoted wave function; (b) same as (a) but the contribution of the
Hartree phase is no longer removed from C(t) (we use Eq. (V.2) ); (c) same as (b)
but the amplitude of the nuclear wave function overlap is no longer suppressed
from C(t) ( we use Eq. (V.3)); (d) the spectrum without suppressing any
component of the overlap. This is the correct TDH spectrum which is close to the
correct fully quantal calculation.




Fig. 4 A comparison of the absorption spectra obtained by using two different
methods for the calculation of C(t): (a) the classical wave function (QC)
approximation is used for the nuclear dynamics with C(t) given by Eq. (VI.14); (b)
time dependent Hartree (TDH) is used for the dynamics and C(t) is given by Eq.
(II".9). The absorption coefficient is in arbitrary units and the photon energy in
eV.
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